Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Molecules ; 26(13)2021 Jun 25.
Article in English | MEDLINE | ID: covidwho-1288960

ABSTRACT

(1) Background: The COVID-19 pandemic lacks treatments; for this reason, the search for potential compounds against therapeutic targets is still necessary. Bioinformatics tools have allowed the rapid in silico screening of possible new metabolite candidates from natural resources or repurposing known ones. Thus, in this work, we aimed to select phytochemical candidates from Peruvian plants with antiviral potential against three therapeutical targets of SARS-CoV-2. (2) Methods: We applied in silico technics, such as virtual screening, molecular docking, molecular dynamics simulation, and MM/GBSA estimation. (3) Results: Rutin, a compound present in Peruvian native plants, showed affinity against three targets of SARS-CoV-2. The molecular dynamics simulation demonstrated the high stability of receptor-ligand systems during the time of the simulation. Our results showed that the Mpro-Rutin system exhibited higher binding free energy than PLpro-Rutin and N-Rutin systems through MM/GBSA analysis. (4) Conclusions: Our study provides insight on natural metabolites from Peruvian plants with therapeutical potential. We found Rutin as a potential candidate with multiple pharmacological properties against SARS-CoV-2.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plants/chemistry , Plants/metabolism , Asteraceae/chemistry , Asteraceae/metabolism , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Coronavirus Nucleocapsid Proteins/antagonists & inhibitors , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Papain-Like Proteases/antagonists & inhibitors , Coronavirus Papain-Like Proteases/chemistry , Databases, Factual , Humans , Lepidium/chemistry , Lepidium/metabolism , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Peru , Phosphoproteins/antagonists & inhibitors , Phosphoproteins/chemistry , Rutin/chemistry , Rutin/pharmacology , SARS-CoV-2
2.
J Mol Graph Model ; 104: 107851, 2021 05.
Article in English | MEDLINE | ID: covidwho-1053559

ABSTRACT

The SARS-CoV-2 virus is causing COVID-19, an ongoing pandemic, with extraordinary global health, social, and political implications. Currently, extensive research and development efforts are aimed at producing a safe and effective vaccine. In the interim, small molecules are being widely investigated for antiviral effects. With respect to viral replication, the papain-like (PLpro) and main proteases (Mpro), are critical for processing viral replicase polypeptides. Further, the PLpro possesses deubiquitinating activity affecting key signalling pathways, including inhibition of interferon and innate immune antagonism. Therefore, inhibition of PLpro activity with small molecules is an important research direction. Our aim was to focus on identification of potential inhibitors of the protease activity of SARS-CoV-2 PLpro. We investigated 300 small compounds derived predominantly from our OliveNet™ library (222 phenolics) and supplemented with synthetic and dietary compounds with reported antiviral activities. An initial docking screen, using the potent and selective noncovalent PLpro inhibitor, GRL-0617 as a control, enabled a selection of 30 compounds for further analyses. From further in silico analyses, including docking to scenes derived from a publicly available molecular dynamics simulation trajectory (100 µs PDB 6WX4; DESRES-ANTON-11441075), we identified lead compounds for further in vitro evaluation using an enzymatic inhibition assay measuring SARS-CoV-2 PLpro protease activity. Our findings indicate that hypericin possessed inhibition activity, and both rutin and cyanidin-3-O-glucoside resulted in a concentration-dependent inhibition of the PLpro, with activity in the micromolar range. Overall, hypericin, rutin, and cyanidin-3-O-glucoside can be considered lead compounds requiring further characterisation for potential antiviral effects in appropriate model systems.


Subject(s)
Anthocyanins/chemistry , Antiviral Agents/chemistry , Coronavirus 3C Proteases/chemistry , Perylene/analogs & derivatives , Rutin/chemistry , Small Molecule Libraries/chemistry , Anthocyanins/pharmacology , Anthracenes , Antiviral Agents/pharmacology , Binding Sites , COVID-19/virology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Enzyme Assays , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Perylene/chemistry , Perylene/pharmacology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Quantum Theory , Rutin/pharmacology , SARS-CoV-2/chemistry , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , Small Molecule Libraries/pharmacology , Thermodynamics , COVID-19 Drug Treatment
3.
Phys Chem Chem Phys ; 22(43): 25335-25343, 2020 Nov 21.
Article in English | MEDLINE | ID: covidwho-899989

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an ongoing global pandemic with very limited specific treatments. To fight COVID-19, various traditional antiviral medicines have been prescribed in China to infected patients with mild to moderate symptoms and received unexpected success in controlling the disease. However, the molecular mechanisms of how these herbal medicines interact with the SARS-CoV-2 virus that causes COVID-19 have remained elusive. It is well known that the main protease (Mpro) of SARS-CoV-2 plays an important role in maturation of many viral proteins such as the RNA-dependent RNA polymerase. Here, we explore the underlying molecular mechanisms of the computationally determined top candidate, namely, rutin which is a key component in many traditional antiviral medicines such as Lianhuaqinwen and Shuanghuanlian, for inhibiting the viral target-Mpro. Using in silico methods (docking and molecular dynamics simulations), we revealed the dynamics and energetics of rutin when interacting with the Mpro of SARS-CoV-2, suggesting that the highly hydrophilic rutin molecule can be bound inside the Mpro's pocket (active site) and possibly inhibit its biological functions. In addition, we optimized the structure of rutin and designed two more hydrophobic analogs, M1 and M2, which satisfy the rule of five for western medicines and demonstrated that they (M2 in particular) possess much stronger binding affinities to the SARS-COV-2s Mpro than rutin, due to the enhanced hydrophobic interaction as well as more hydrogen bonds. Therefore, our results provide invaluable insights into the mechanism of a ligand's binding inside the Mpro and shed light on future structure-based designs of high-potent inhibitors for SARS-CoV-2 Mpro.


Subject(s)
Betacoronavirus/enzymology , Cysteine Endopeptidases/metabolism , Protease Inhibitors/chemistry , Rutin/chemistry , Viral Nonstructural Proteins/metabolism , Betacoronavirus/isolation & purification , Binding Sites , COVID-19 , Coronavirus 3C Proteases , Coronavirus Infections/pathology , Coronavirus Infections/virology , Cysteine Endopeptidases/chemistry , Herbal Medicine , Humans , Hydrogen Bonding , Molecular Docking Simulation , Molecular Dynamics Simulation , Pandemics , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Protease Inhibitors/metabolism , Protein Domains , Rutin/metabolism , SARS-CoV-2 , Thermodynamics , Viral Nonstructural Proteins/chemistry
4.
Infect Genet Evol ; 84: 104451, 2020 10.
Article in English | MEDLINE | ID: covidwho-630854

ABSTRACT

WHO has declared the outbreak of COVID-19 as a public health emergency of international concern. The ever-growing new cases have called for an urgent emergency for specific anti-COVID-19 drugs. Three structural proteins (Membrane, Envelope and Nucleocapsid protein) play an essential role in the assembly and formation of the infectious virion particles. Thus, the present study was designed to identify potential drug candidates from the unique collection of 548 anti-viral compounds (natural and synthetic anti-viral), which target SARS-CoV-2 structural proteins. High-end molecular docking analysis was performed to characterize the binding affinity of the selected drugs-the ligand, with the SARS-CoV-2 structural proteins, while high-level Simulation studies analyzed the stability of drug-protein interactions. The present study identified rutin, a bioflavonoid and the antibiotic, doxycycline, as the most potent inhibitor of SARS-CoV-2 envelope protein. Caffeic acid and ferulic acid were found to inhibit SARS-CoV-2 membrane protein while the anti-viral agent's simeprevir and grazoprevir showed a high binding affinity for nucleocapsid protein. All these compounds not only showed excellent pharmacokinetic properties, absorption, metabolism, minimal toxicity and bioavailability but were also remain stabilized at the active site of proteins during the MD simulation. Thus, the identified lead compounds may act as potential molecules for the development of effective drugs against SARS-CoV-2 by inhibiting the envelope formation, virion assembly and viral pathogenesis.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Nucleocapsid Proteins/chemistry , Viral Envelope Proteins/chemistry , Viral Matrix Proteins/chemistry , Virion/drug effects , Amides , Amino Acid Sequence , Antiviral Agents/chemistry , Betacoronavirus/genetics , Betacoronavirus/metabolism , Binding Sites , COVID-19 , Caffeic Acids/chemistry , Caffeic Acids/pharmacology , Carbamates , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Coumaric Acids/chemistry , Coumaric Acids/pharmacology , Cyclopropanes , Doxycycline/chemistry , Doxycycline/pharmacology , Gene Expression , Humans , Kinetics , Molecular Docking Simulation , Molecular Dynamics Simulation , Nucleocapsid Proteins/antagonists & inhibitors , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/metabolism , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Quinoxalines/chemistry , Quinoxalines/pharmacology , Rutin/chemistry , Rutin/pharmacology , SARS-CoV-2 , Sequence Alignment , Sequence Homology, Amino Acid , Simeprevir/chemistry , Simeprevir/pharmacology , Sulfonamides , Thermodynamics , Viral Envelope Proteins/antagonists & inhibitors , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Viral Matrix Proteins/antagonists & inhibitors , Viral Matrix Proteins/genetics , Viral Matrix Proteins/metabolism , Virion/genetics
SELECTION OF CITATIONS
SEARCH DETAIL